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LETTER TO THE EDITOR 

. Hidden quantum group structure in Chern-Sions theory 

A C T W u  
Raddall Laboratory of Physic, University of Michigan, Ann Arbor, MI 48109, USA 

Received 5 May 1993 

Abstract. The unexpurgated K' matrix in Ihe Chem-Simons theory of topological 
systems (such as the fractional Hall system, the c h i d  spin system and the anyon system) is 
viewed as a q-deformed Cartan matrix. The connection 10 the known generalized quantum 
groups is pointed out. An alternative interpretation in terms of quantum superalgebra in 
the graded Yang-Baxter basis also holds. 

The (2+l)-dimensional Chern-Simons theory [l-81 has a number of interesting 
properties, for example, topological invariants [3], fractional statistics [4-71, link 
polynomials and knots [SI, and connection to rational conformal field theory [S ,  91. 
Through the last two features, the connection with the Yang-Baxter equations and 
quantum groups [lo, 111 is established. 

Recently, Zee and his collaborators [12-141 have discussed the long-distance 
properties of two-dimensional topological fluids (such as the Hall fluid, the chiral spin 
fluid, and the anyon superfluid) in the Chern-Sions approach. The theory is 
characterized by a m  X m K-matrix (see (4) below) which can be transformed into a K' 
matrix whose (m - 1) x (m - 1) block is the Cartan matrix for the Lie algebra su(m). 
Thus a SU(m) symmetry is claimed~ [12,15] by ignoring the last row and the last 
column in the K' matrix. 

In this letter we wish to point out that the unexpurgated K' matrix could be viewed 
as a q-deformed Cartan matrix which has been discussed in the generalized quantum 
groups [16]. This generalized quantum group structure arises in the non-standard 
braid group representations when the quantum group parameter q is changed into 
-4-l at certain strategic places in the Yang-Baxter R-matrix. In the conventional 
Yang-Baxter basis, the new algebra corresponds  to^ a distorted stq(m+ 1) with a 
special value of q (q  being a root of unity). Alternatively, in the graded Yang-Baxter 
basis, the new algebra corresponds to the superalgebra stq(m[ 1). 

For the basic formalism of the K matrix in the Chem-Simons theory, we refer the 
readerto Zee [12]. The effective Lagrangian has the following form: 

L= ( l l r l ~ ~ ) ~ ~ ' a , K a , a ~ +  apjp (1) 
where a,, is a gauge potential and j, is a reduced current (vortex current minus the 
electromagnetic current). K is the m X m matrix: 

l P + l  P . . P \  

' I  \ P  p . . p + l  
. .  
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Physically, the parameter p is a measure of the flux attached to each electron in the 
Hall effect; p enters in the fractional filling factor v=m/(mp+l),  for even p. In 
[12,14], it is shown that the Fourier transform J. of the Jo current in the K-matrix 
Chern-Simons model satisfies the Kac-Moody algebra 

[J!,,,J'.]=mSm,.-,KU. (3) 
Furthermore, the theory is invariant under a transformation on K, namely XTKXwith 
integer-valued matrix X&(m, 2) which would preserve the integer-valued topologi- 
cal vorticity. One finds [U,  14,121 that 

2 - 1  0 . 

K' = XT'= (4) 

-1 
. -1 p + l  

by taking 

. .  -1 1 

(5) 

When the last row and the last column of the K' matrix are disregarded, one 
recognizes the (m- 1) x(m-1) submatrix as the Cartan matrix for su(m), thus a 
SU(m) symmetry for the model [12,14, U]. 

Consider the unexpurgated m x m K' matrix given by (4). Equation (4) implies 
that the mth root vector (of the underlying algebra) has a norm [@ + 1)/2Iv" instead of 
the usual 1. We can rescale this norm to be one, but at the cost of deforming its scalar 
productfrom2cosO=-l to2cosO=-[2/@+l)]v2. Therescaled K'matrix reads 

\ 2 - 1  0 .  I -1 2 -i . 

A special class of the q-deformed Cartan matrix has been discussed in 1161 in the 
context of non-standard braid group representations of the quantum group st?&m). 
We here discuss the non-trivial case p # 1. (Physically relevant cases are when p is 
even.) 

We go to the non-standard braid group representation [16] of se@ + 1) by making 
one deformation q+ - l / q  in the last entry in the (m+ 1)' X (m + 1)' R-matrix. The 
net result is the following generalized algebra: 

(a 1 ( x , ) 2 = 0  for the last mth element. (7a ) 
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(b) Corresponding to the regular Cartan matrix element uii=3Sii- 1, li-jl sl, fori, 
j = 1 ,  . . . , m-1, (ui,=O. li-jl>l), we have the standard quantum algebra st,(m): 

i, j = 1 , .  . . , m-1 .  (76) 

(7c 1 
=q+Mam-1,= i, j = m  - 1, m. ( 7 4  

am-l.m=-[2/(~+1)1UZ (8) 

, q=exp(-bz/{l+ [2 / (p+  I)]"). (9) 

K ~ K ;  1 = *+x? 
(c) Corresponding to the entry u ~ - ~ . , , ,  , we obtain 

I 

&y?K I 7 1 = (-# "X,? 

( d )  Inserting the value from (6) 

we see that (7c) and (7d) are compatible for q being a root of unity: 

This shows that the unexpurgated K' matrix of (4) can be interpreted as a q-deformed 
Cartan matrix which can be accommodated in the non-standard braid group represen- 
tation seq(m) with special value of q given by (9). Alternatively, in the graded 
Yang-Baxter basis, the non-standard braid group representations can be reinter- 
preted as quantum superalgebra [16,17]. Thus for the present case of (6), we would 
get the quantum supersymmetry SL,(mll). Such supersymmetry is perhaps not a 
great surprise-for the anyon systems. A concrete realization of generalized quantum 
group structure in two-dimensional quantum fluids would be of interest and the details 
remain to be worked out. 

The author thanks A Zee for an illuminating lecture and for a copy of his Kyoto 
LectuIes. 
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